Simulation and Performance Analysis of Organic Rankine Systems for Stationary Compressed Natural Gas Engine
نویسندگان
چکیده
The organic Rankine cycle (ORC) can be used to recover the waste heat from a stationary compressed natural gas (CNG) engine. However, the exhaust energy rate varies with engine load, which can influence the operating performance of the ORC system, therefore, it is necessary to study the running state of the ORC system. In this paper, first, the numerical simulation model of the ORC system is built by using GT-Suite software, with R245fa selected as the working fluid of the ORC system. The boundary conditions of the numerical simulation model are specified according to the measured data obtained by the stationary CNG engine test. Subsequently, the power output and dynamic characteristics of expander are analyzed to determine the running state of the ORC system. Investigations indicate that the fluctuation of refrigerant mass flow rate in the expander is obvious in the engine’s low-load regions (from 20% engine load to 40% engine load). The performances of ORC system and stationary CNG engine-ORC combined system (combined system) are finally investigated, respectively. The results show that the thermal efficiency of the combined system can be increased by a maximum 5.0% (at the engine rated condition), while the brake specific fuel consumption (BSFC) can be reduced by a maximum 4.0% (at the engine rated condition).
منابع مشابه
A Comprehensive Comparative Investigation of Compressed Natural Gas as an Alternative Fuel in a Bi-Fuel Spark Ignition Engine
Nowadays, increased attention has been focused on internal combustion engine fuels. Regarding environmental effects of internal combustion engines particularly as sources of pollution and depletion of fossil fuels, compressed natural gas has been introduced as an alternative to gasoline and diesel fuels in many applications. A high research octane number which allows combustion at higher co...
متن کاملAnalyzing the Performance of a Dual Loop Organic Rankine Cycle System for Waste Heat Recovery of a Heavy-Duty Compressed Natural Gas Engine
A dual loop organic Rankine cycle (DORC) system is designed to recover waste heat from a heavy-duty compressed natural gas engine (CNGE), and the performance of the DORC–CNGE combined system is simulated and discussed. The DORC system includes high-temperature (HT) and low-temperature (LT) cycles. The HT cycle recovers energy from the exhaust gas emitted by the engine, whereas the LT cycle reco...
متن کاملEffect of Direct Injection Diesel Engine Convert to Sequential Injection CNG Engine in Intake Port Gas Flow Pressure Profile
The one dimension computational model of a sequential injection engine, which runs on compressed natural gas (CNG) with spark ignition, is developed for this study, to simulate the performance of gas flow pressure profile, under various speed conditions. The computational model is used to simulate and study of the steady state and transient processes of the intake manifold. The sequential injec...
متن کاملDual Fuelling of a Direct Injection Automotive Diesel Engine by Diesel and Compressed Natural Gas
Application of Compressed Natural Gas (CNG) in diesel engines has always been important, especially in the field of automotive engineering. This is due to easy accessibility, better mixing quality and good combustion characteristics of the CNG fuel. In this study the application of CNG fuel along with diesel oil in a heavy duty direct-injection automotive diesel engine is experimentally investi...
متن کاملSelection of the optimum prime mover and the working fluid in a regenerative organic rankine cycle
A regenerative organic Rankine cycle (RORC) is modeled and optimized for the use of waste heat recovery from a prime mover (PM). Three PMs including, a diesel engine, a gas engine, and a microturbine are selected in this study. Four refrigerants including isobutane, R123, R134a, and R245fa are selected. The nominal capacity of the PM, PM operating partial load, turbine inlet pressure, condenser...
متن کامل